

TIJESRT

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY

ROBUST FINGERPRINT MATCHING USING RING BASED ZERNIKE MOMENTS:A SURVEY

R. Shakthi Pooja*, S. Swetha. S, K. Alice

* Department of computer science, GKM college of Engineering and Technology

DOI: 10.5281/zenodo.400961

ABSTRACT

By analyzing and comparing several fingerprint matching methodologies, we found that every single method will have the advantage in providing security as well as ,will face some bottleneck problems as drawback. This paper presents a survey on the improvement in each fingerprint matching algorithm . The experiments performed on real-world applications provides the result that any fingerprint matching algorithm which derived from the previous paper will have some 20% of enhancement in it. The drawbacks on each paper and the method to solve that will be discussed as a survey in this paper.

INTRODUCTION

Due to the performance and low cost fingerprint based biometrics authentication systems are used for more than a century successfully. These fingerprint recognition systems are highly used by the forensic department for criminal investigation. Eventhough these systems plays a major role in user identification, it has some challenging risks to face.But due to the unique property of the fingerprint (i.e) no two humans will have the same finger prints, these systems exists in the security domain. Although these systems cannot be easily hacked or attackedby the intruders , there is some possibility to hack these systems. Fingerprintmatching is difficult due to the following reasons. 1, Skin distortions 2, rotation 3, Errors in feature extraction. The devices based on fingerprint recognition systems are wellsuited for many real time applications. When considering the performance these systems are fast and flexible.Nowadays many security devices are existing in the market ,but the security provided by fingerprint recognition systems are stand-alone and reliable. These systems are highly reliable and best to use. The new security systems will try to solve the problems of the existing devices .Biometric fingerprint recognition systems are vulnerable to spoofing attacks. These systems plays major role in forensics and in civil applications. It has been proved that fingerprint based security systems are the most reliable method to use and has the high market shares.Even though it is the most reliable method it has been studied for many years that the performance of these systems is still lesser than the expectation. The fingerprints can be acquired both in online and as in off-line. Here a survey on all fingerprint matching methods has been discussed and the description of the benefits and drawbacks on each paper is listed.

LATENT FINGERPRINT MATCHING

This paper[1] uses a robust alignment algorithm called "Descriptor based Hough transform" to align fingerprints and measures similarity between fingerprints by considering both minutiae and orientation field information for matching Latents. The speed of our matcher running in a pc with intel core2 quad CPU and windows XP OS is around 10 matches per second.No need of spending time in optimizing the code for speed.Multithread capabilities were not utilized.This matching could be much faster in C/C++ than in MATLAB because of the nature of the MATLAB descriptors.

FINGERPRINT MATCHING USING PORES AND RIDGES

This paper[2] focuses on extracting level3 features(pores) because it is found that level3 features claimed to be permanent and unique for fingerprint matching algorithm. It includes the implementation of high resolution fingerprint sensors due to its accuracy.

[Pooja* et al., 6(3): March, 2017]

ICTM Value: 3.00

ISSN: 2277-9655 Impact Factor: 4.116 CODEN: IJESS7

Iterative closest point algorithm is employed for matching level3 features which provides consistent performance in high quality and low quality images. This method is informative and robust. Level3 features should only be used when the fingerprint image is of high quality.

A HYBRID MOBILE VISUAL SEARCH SYSTEM

The main idea behind this paper[3] is that it combines the benefits of on-device and on-server database matching methods and efficient inter frame coding od a sequence of global signatures which are extracted from the viewfinder frames on the mobile device.

This hybrid system provides a fast local query on mobile.Our coding inter frame method reduces the uplink bitrate.Residual enhanced visual vector(REVV)is ell-suited to building a memory efficient on-device MVS system.This system requires 50MB of RAM to store look images on mobile device.Low bitrate provides querying remote server over networks with low transfer rates.

COMPRESSED INGERPRINT MATCHING

This paper[4] is intended to use real -valued or binary random projections to effectively compress the FingerPrint. The method is concentrated to reduce the size of the camera fingerprints based on random Projections. The most common camera fingerprint is the PRNU(Photo response non-uniformity) of digital imaging sensor.

The proposed method effectively preserve the geometry of the database and reduce the dimension of the problem. This method provides higher compression ratios and improves scalability.Complexity in calculating random projections in million-pixel images but it can be solved by sensing matrice

TOUCHLESS MULTIVIEW FINGERPRINTS ACQUISITION AND MOSAICKING

This paper[5] is depicts a touchless multi view fingerprint capture device using multi camera mode with optimized This device parameters and it uses the mosaicking method is to splice together the captured images of a finger to form a new image with a larger useful print area.

Since each finger has four sample in our method and it has high image quality and features are extracted correctly and transformation model estimation results also has the similar results as the proposed method discussed in this paper. The quality of the images cannot be guaranteed due to touchless imaging technique which leads to bad mosaicking results. The speed for image quality of device is much lower than that of touch based devices.

INCORPORATING RIDGE FEATURES WITH MINUTIAE

This paper[6] shows fingerprint matching using extracting both the ridge and minutiae-feature. To extract features of ridge and minutiae the four elements is considered. They are ridge-count, ridgelength, ridge curvature direction and ridge type.

The proposed method gives additional information for fingerprint matching with little increment of template size. The method is invariant to any transform and it can be used in addition to conventional alignment free features in the fingerprint identification. This method needs to be improved for images with a small foreground are and those of low quality.

FINGERPRINT MATCHING BASED ON GPU

This paper[7] presents a GPU fingerprint matching system which is based on MCC(Minutia cylinder code) and it is the best performing algorithm in terms of accuracy.

The speed up ratios is up to 100.8x with respect to a single thread CPU implementation. This system has no scaling issues. It can identify a fingerprint from large database processing up to 55700 fingerprints per second with single GPU. When GPU'S are colloborated they have to exchange data to perform different operations which makes the calculation slower.

FINGERPRINT LIVELINESS DETECTION

This paper[8]concentrates on differentiating fake and live finger print. Implementation of SURF and the PHOG method separately in order to detect the liveness of the fingerprint is un reliable.But the combination of SURF+PHOG method yields greater accuracy in terms of performance.

[Pooja* et al., 6(3): March, 2017]

ICTM Value: 3.00

ISSN: 2277-9655 Impact Factor: 4.116 CODEN: IJESS7

The experimental and theoretical results has proven that this method has low equal error rate(EER).Low level gradient features are used as feature extraction which is highly reliable.Increase in false acceptance rate and drop in false rejection rate lowers the equal error rate.

EFFICIENT SENSOR FINGERPRINT MATCHING

This paper[9] is focused on improving the computational efficiency of source identification techniques which is PRNU noise based sensor fingerprint matching method.

The detection accuracy of this method is very high with false positives and negatives in the order of 10⁻⁶ or less.It aims to reduce the number of matchings hat have to be performed when searching a large database.It includes efficient retrieval of a fingerprint using binary search tree method.The main memory operations like loading of a fingerprint data takes high amount of time.Compression is not very effective and it takes upto 50MB of space even after compression.

EXEMPLAR PRINTS FOR LATENT FINGERPRINT MATCHING

[10] uses feedback in matching stage to refine the features extracted from the latent fingerprint image. This This paper paper gives the information that matching latent images based on initially extracted set of features without any prior information and is prone to error. So it integrates top-down flow to matching to use exemplar mate to refine features in order to improve the accuracy.

The proposed method in this paper refines the latent features and improves the rank 1 identification and accuracy is improved to 3.5%. This method uses a local ridge orientation to extract features at multiple peak points in frequency representation of the latent image which results in computational complexity.

S.N	TITLE	DESCRIPTION	ADVA	NTAGES	DISADVANTAGE		FUTURE WORK
0					S		
1.	Latent fingerprint matching	This paper[1] uses a robust alignment algorithm called "Descriptor based Hough transform" to align fingerprints and measures similarity between fingerprints by considering both minutiae and orientation field information for matching Latents.	*	The speed of our matcher running in a pc with intel core2 quad CPU and windows XP OS is around 10 matches per second. No need of spending time in optimizing the code for speed.	*	Multithrea d capabilitie s were not utilized. This matching could be much faster in C/C++ than in MATLAB because of the nature of the MATLAB descriptors	Improving multithreading capabilities.
	FINGERPRINT MATCHING USING PORES AND	This paper[2] focuses on extracting level3 features(pores) because it is	*	Iterative closest point	*	Level3 features should	Extract level 3 features for images with low quality.
	RIDGES	found that level3 features		algorithm		only be	
		claimed to be permanent and		is		used when	
		unique for fingerprint		employed		the	
		matching algorithm. It includes		for		fingerprint	
		the implementation of high resolution fingerprint sensors		matching level3		image is of high	
		due to its accuracy		features		quality.	

ISSN: 2277-9655 Impact Factor: 4.116 CODEN: IJESS7

	IC ^{IM} Value: 3.0	20				COL	DEN: IJESS7
			*	which provides consistent performan ce in high quality and low quality images. This method is informativ e and robust.			
3.	A HYBRID MOBILE VISUAL SEARCH SYSTEM	The main idea behind this paper[3] is that it combines the benefits of on-device and on-server database matching methods and efficient inter frame coding od a sequence of global signatures which are extracted from the viewfinder frames on the mobile device.	*	This hybrid system provides a fast local query on mobile. Our coding inter frame method reduces the uplink bitrate. Residual enhanced visual vector(RE VV)is ell- suited to building a memory efficient on-device MVS system.	*	This system requires 50MB of RAM to store look images on mobile device. Low bitrates provides querying remote server over networks with low transfer rates.	Reducing the storage space for images.
4.	COMPRESSED INGERPRINT MATCHING	This paper[4] is intended to use real -valued or binary random projections to effectively compress the FingerPrint. The method is concentrated to reduce the size of the camera fingerprints based on random Projections. The most common camera fingerprint is the PRNU(Photo response non-uniformity) of digital imaging sensor.	*	The proposed method effectively preserve the geometry of the database and reduce the dimension of the problem. This method provides	*	Complexit y in calculating random projections in million- pixel images but it can be solved by sensing matrices.	Reducing the difficulties in calculating the random projections.

ISSN: 2277-9655 Impact Factor: 4.116 CODEN: IJESS7

	IC ^{IM} Value: 3.00 CODEN: IJESS7										
			higher compressi on ratios and improves scalability.								
5.	TOUCHLESS MULTIVIEW FINGERPRINTS ACQUISITION AND MOSAICKING	This paper[5] is depicts a touchless multi view fingerprint capture device using multi camera mode with optimized device parameters and it uses the mosaicking method is to splice together the captured images of a finger to form a new image with a larger useful print area.	Since each finger has four sample in our method and it has high image quality and features are extracted correctly and transformation model estimation results also has the similar results as the proposed method discussed in this paper.	 The quality of the images cannot be guaranteed due to touchless imaging technique which leads to bad mosaickin g results. The speed for image quality of device is much lower than that of touch based devices. 	To improve the performance of the method to assure quality of the images.						
6.	INCORPORATING RIDGE FEATURES WITH MINUTIAE	This paper[6] shows fingerprint matching using extracting both the ridge and minutiae-feature. To extract features of ridge and minutiae the four elements is considered. They are ridge- count,ridgelength,ridge curvature direction and ridge type.	 The proposed method gives additional informatio n for fingerprint matching with little increment of template size. The method is invariant to any transform and it can be used in addition to convention al alignment free 	This method needs to be improved for images with a small foreground are and those of low quality	Extracting ridge and minutiae for images of low quality with high reliability.						

© International Journal of Engineering Sciences & Research Technology

ISSN: 2277-9655 Impact Factor: 4.116 CODEN: IJESS7

	IC ^{1M} Value: 3.0			-	001	DEN: IJESS/
				features in the fingerprint identificati on.		
7.	FINGERPRINT MATCHING BASED ON GPU	This paper[7] presents a GPU fingerprint matching system which is based on MCC(Minutia cylinder code)and it is the best performing algorithm in terms of accuracy.	* *	The speed up ratios is up to 100.8x with respect to a single thread CPU implement ation. This system has no scaling issues. It can identify a fingerprint from large database processing up to 55700 fingerprint s per second with single GPU.	When GPU'S are colloborated they have to exchange data to perform different operations which makes the calculation slower	Reducing the hindrance when many GPU'S are combined.
8.	FINGERPRINT LIVELINESS DETECTION	This paper[8]concentrates on differentiating fake and live finger print. Implementation of SURF and the PHOG method separately in order to detect the liveness of the fingerprint is un reliable.But the combination of SURF+PHOG method yields greater accuracy in terms of performance.	*	The experiment al and theoretical results has proven that this method has low equal error rate(EER). Low level gradient features are used as feature extraction which is	 Increase in false acceptance rate and drop in false rejection rate lowers the equal error rate. 	To maintain constant equal error rate(EER).

ISSN: 2277-9655 Impact Factor: 4.116 CODEN: IJESS7

				highly reliable.			
9.	EFFICIENT SENSOR FINGERPRINT MATCHING	This paper[9] is focused on improving the computational efficiency of source identification techniques which is PRNU noise based sensor fingerprint matching method.	*	The detection accuracy of this method is very high with false positives and negatives in the order of 10^-6 or less. It aims to reduce the number of matchings hat have to be performed when searching a large database. It includes efficient retrieval of a fingerprint using binary search tree method.	*	The main memory operations like loading of a fingerprint data takes high amount of time. Compressi on is not very effective and it takes upto 50MB of space even after compressi on.	Implementation of best compression techniques.

S.NO	TITLE	DESCRIPTION	ADVANTAGES		DISADVANTAGE		FUTURE WORK
					S		
1.	Latent fingerprint matching	This paper[1] uses a robust alignment algorithm called "Descriptor based Hough transform" to align fingerprints and measures similarity between fingerprints by considering both minutiae and orientation field information for matching Latents.	*	The speed of our matcher running in a pc with intel core2 quad CPU and windows XP OS is around 10 matches per second. No need of	*	d capabilitie s were not utilized.	Improving multithreading capabilities.

ISSN: 2277-9655 Impact Factor: 4.116 CODEN: IJESS7

	IC TM Value: 3	CODEN: IJESS7					
				spending time in optimizing the code for speed.		MATLAB descriptors	
2.	FINGERPRINT MATCHING USING PORES AND RIDGES	This paper[2] focuses on extracting level3 features(pores) because it is found that level3 features claimed to be permanent and unique for fingerprint matching algorithm.It includes the implementation of high resolution fingerprint sensors due to its accuracy	*	Iterative closest point algorithm is employed for matching level3 features which provides consistent performan ce in high quality and low quality images. This method is informativ e and robust.	*	Level3 features should only be used when the fingerprint image is of high quality.	Extract level 3 features for images with low quality.
3.	A HYBRID MOBILE VISUAL SEARCH SYSTEM	The main idea behind this paper[3] is that it combines the benefits of on-device and on-server database matching methods and efficient inter frame coding od a sequence of global signatures which are extracted from the viewfinder frames on the mobile device.	*	This hybrid system provides a fast local query on mobile. Our coding inter frame method reduces the uplink bitrate. Residual enhanced visual vector(RE VV)is ell- suited to building a memory efficient on-device MVS system.	*	This system requires 50MB of RAM to store look images on mobile device. Low bitrates provides querying remote server over networks with low transfer rates.	Reducing the storage space for images.

© International Journal of Engineering Sciences & Research Technology [336]

[Pooja* *et al.*, 6(3): March, 2017] ICTM Value: 3.00

ISSN: 2277-9655 Impact Factor: 4.116

	IC TM Value: 3	.00		CODEN: IJESS7			
4.	COMPRESSED INGERPRINT MATCHING	This paper[4] is intended to use real -valued or binary random projections to effectively compress the FingerPrint. The method is concentrated to reduce the size of the camera fingerprints based on random Projections. The most common camera fingerprint is the PRNU(Photo response non-uniformity) of digital imaging sensor.	 The proposed method effectively preserve the geometry of the database and reduce the dimension of the problem. This method provides higher compressi on ratios and improves scalability. 	Complexit y in calculating random projections in million- pixel images but it can be solved by sensing matrices.	Reducing the difficulties in calculating the random projections.		
5.	TOUCHLESS MULTIVIEW FINGERPRINTS ACQUISITION AND MOSAICKING	This paper[5] is depicts a touchless multi view fingerprint capture device using multi camera mode with optimized device parameters and it uses the mosaicking method is to splice together the captured images of a finger to form a new image with a larger useful print area.	Since each finger has four sample in our method and it has high image quality and features are extracted correctly and transformation model estimation results also has the similar results as the proposed method discussed in this paper.	 The quality of the images cannot be guaranteed due to touchless imaging technique which leads to bad mosaickin g results. The speed for image quality of device is much lower than that of touch based devices. 	To improve the performance of the method to assure quality of the images.		
6.	INCORPORATING RIDGE FEATURES WITH MINUTIAE	This paper[6] shows fingerprint matching using extracting both the ridge and minutiae-feature.To extract features of ridge and minutiae the four elements is considered.They are ridge- count,ridgelength,ridge	 The proposed method gives additional informatio n for fingerprint 	This method needs to be improved for images with a small foreground are and those of low quality	Extracting ridge and minutiae for images of low quality with high reliability.		

	IC^{тм} Value: 3.00				CODEN: IJESS7				
		curvature direction and ridge type.	*	matching with little increment of template size. The method is invariant to any transform and it can be used in addition to convention al alignment free features in the fingerprint identificati on.					
7.	FINGERPRINT MATCHING BASED ON GPU	This paper[7] presents a GPU fingerprint matching system which is based on MCC(Minutia cylinder code)and it is the best performing algorithm in terms of accuracy.	*	The speed up ratios is up to 100.8x with respect to a single thread CPU implement ation. This system has no scaling issues. It can identify a fingerprint from large database processing up to 55700 fingerprint s per second with single GPU.	When GPU'S are colloborated they have to exchange data to perform different operations which makes the calculation slower	Reducing the hindrance when many GPU'S are combined.			

[Pooja* et al., 6(3): March, 2017]

ISSN: 2277-9655 Impact Factor: 4.116

	ICTM Value: 3.00				CODEN: IJESS7			
8.	FINGERPRINT LIVELINESS DETECTION	This paper[8]concentrates on differentiating fake and live finger print. Implementation of SURF and the PHOG method separately in order to detect the liveness of the fingerprint is un reliable.But the combination of SURF+PHOG method yields greater accuracy in terms of performance.	*	The experiment al and theoretical results has proven that this method has low equal error rate(EER). Low level gradient features are used as feature extraction which is highly reliable.	*	Increase in false acceptance rate and drop in false rejection rate lowers the equal error rate.	To maintain constant equal error rate(EER).	
9.	EFFICIENT SENSOR FINGERPRINT MATCHING	This paper[9] is focused on improving the computational efficiency of source identification techniques which is PRNU noise based sensor fingerprint matching method.	*	The detection accuracy of this method is very high with false positives and negatives in the order of 10^-6 or less. It aims to reduce the number of matchings hat have to be performed when searching a large database. It includes efficient retrieval of a fingerprint using binary search tree method.	*	The main memory operations like loading of a fingerprint data takes high amount of time. Compressi on is not very effective and it takes upto 50MB of space even after compressi on.	Implementation of best compression techniques.	

1

[Pooja* *et al.*, 6(3): March, 2017] ICTM Value: 3.00 ISSN: 2277-9655 Impact Factor: 4.116 CODEN: LIESS7

	IC ^{IM} Value: 3	.00					DEN: IJESS7
10.	LATENT	This paper[10] uses	*	It	*	Frequency	To have a method toextract
	FINGERPRINT	feedback in matching		improves		representat	features at multiple peak.
	MATCHING AND	stage to refine the features		the rank-1		ion of the	
	EXEMPLAR	extracted from the latent		identificati		latent	
	PRINTS	fingerprint image. This		on and		image	
		This paper paper gives the		accuracy is		results in	
		information that matching		improved		computatio	
		latent images based on		around		nal	
		initially extracted set of		3.5%.		complexity	
		features without any prior					
		information and is prone					
		to error. So it integrates					
		top-down flow to					
		matching to use exemplar					
		mate to refine features in					
		order to improve the					
		accuracy.					

REFERENCES

- [1] Alessadra A.Paulino, Jianjiang Feng and Anil K.Jain, on "Information forensics and security", vol.8, No.1, January 2013.
- [2] Anil K.Jain,Yi Chen and Meltem Demiruks,on "Pattern analysis and machine intelligence",vol.29,N0.1,January 2007.
- [3] David M.Chen, Bernd Gired, on "Multimedia", vol. 17, No.7, July 2015.
- [4] Diego Valsesia, Giulio coluccia, Tiziano Bianchi and Enrico Magli, on "Information forensics and security", vol.10, N0.7, July 2015.
- [5] Feng Liu,David Zhang,Changjiang Song and Guangming Lu,on "Instrumentation and measurement",vol.62,No.9,September 2013.
- [6] Heeseung Choi,Kyounglaek Choi and Jaihie Kim,on "Information forensics and security",vol.6,No.2,June 2011.
- [7] Pablo Davic , Lastra, Francisco Herrera and Jose Manuel Benitez," Information forensics and security", vol.9, No.1, January 2014.
- [8] Rohit Kumar Dubey, Jonathan and Vrizlynn L.L.Thing, ," Information forensics and security", vol.11, No.7, July 2016.
- [9] Serinc Bayram, Husrev Taha Sencar and Nasir Menon, ," Information forensics and security", vol.7, No.4, August 2012.
- [10] Sunpreet S.Arora, Eryun Liu, Kai Cao, Anil K.Jain, Demiruks, on "Pattern analysis and machine intelligence", vol. 6, N0.1, January 2014.

http://www.ijesrt.com